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Abstract

Applying Kernel Change Point Detection to Financial Markets

Tyler Manning-Dahan

The widespread use of computers in everyday living has created a newfound reliance
on data systems to support the decisions people make. From wristwatches that mon-
itor your health to fridges that notify users of potential problems, data is constantly
being streamed to help users make more informed choices. Because the data has im-
mediate importance to users, techniques that analyse live data quickly and efficiently
are necessary. One such group of methods are online change point detection methods.
Online change point detection is concerned with identifying statistical change points
in a datastream as they occur, as quickly as possible.

The focus for this thesis is on online kernel change point detection methods. Com-
bining kernel two-sample testing and classic change point algorithms, kernel change
point methods provide a robust, non-parametric way to measure changes in probabil-
ity distributions on a variety of datasets and applications. We compare several kernel
change point algorithms on several synthetic datasets across a range of measurements
that assess online performance. We also provide a novel way to select the kernel
bandwidth hyperparameter that adapts to the data in an online fashion.

Additionally, we take a look at the intraday market liquidity changes of several
financial markets. We focus on futures instruments of different asset classes from
the Chicago Mercantile Exchange. Data is sampled for the first four months of 2020
during which the world fell into an economic recession due to a global pandemic.
An online kernel change point detection algorithm is applied to detect changes in the

market liquidity distribution that are indicative of important macroeconomic events.
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Chapter 1

Introduction

1.1 Motivation

In the first half of the twentieth century, Walter Shewart pioneered the use of statisti-
cal control charts for detecting real-time changes in variation. Shewart was interested
in reducing the unexpected causes of variation in the manufacturing processes that
produced faulty manufacturing equipment [80]. Shewart’s method involved charting
the process measurements over time and detecting when a statistical process was no
longer exhibiting an expected level of variation. Once this detection occurred, the
process was stopped and was not restarted until the cause of the variation was fixed.
Shewart’s control charts were one of the first formal methods to solve the problem of
detecting changes in a distribution of a sequence of random variables. This problem
is now known more generally as the change point detection problem. Many industries
make use of change point techniques for real-time decision support systems. The

following are a few motivating examples.

1.1.1 Health Care

Health care is an important area for quickly detecting signal changes. Some recent
studies include applications to heart rate monitoring [93] [84], epilepsy signal seg-
mentation [62], and multi-modal MRI lesion detection [10] to name a few. Quickly
detecting changes to a patient’s health is absolutely necessary for any system to be of

practical use. However, this quick detection must be balanced with high accuracy as



false positives or missed detections could have life-threatening consequences. There-
fore, balancing missed change points with falsely identified change points is a central

theme to online change point detection.

1.1.2 Financial Applications

The application of accurate and timely change point detection is popular in the fi-
nance sector where shifts in asset prices can suddenly happen. Change point detection
is particularly hard in financial applications because of the non-stationary data typ-
ically observed in asset price time series. A common goal is detecting key, historical
moments in the market such as stock market crashes [6] or the sub-prime mortgage
crisis [97]. Note, in the financial literature, change points are also referred to as
structural breaks, but for this thesis we will use the broader term change points.
One example of an online, quick detection technique is proposed in [72], where a
modified Shiryaev - Roberts procedure is used to detect a change point in a single
stock’s daily returns. See Figure 1 for the kind of of change points the authors try to
detect. They compare their non-parametric method with other classic control chart

methods using speed of detection and false alarm rate as measures of performance.

Figure 1: Daily stock prices (top) and daily returns (bottom) for Apple Inc. (NYSE:
AAPL) for the period from January 1, 2006 through February 28, 2020.
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Detecting changes in variance is explored in [52]. The authors propose an offline
change point algorithm that minimizes a global cost function by using an adaptive
regularization function. The algorithm is applied to the absolute returns of the FTSE
100 stock index and the US dollar-Japanese Yen foreign intra-day exchange rate to
detect changes in asset price volatility. The change points identified in the FTSE 100
coincided with key market events such as the stock market crash that occurred on
October 14, 1987 and breaking the 5000 price barrier in August 1997.

For more applications to options markets and arbitrage opportunities, see section
1.3.6 of [86].

1.2 Characteristics of the change point problem

A number of surveys of the literature already exist 3] [69], therefore we will not cover
all existing methods but rather touch upon several, important factors to consider
when approaching a change point detection problem. Across the literature, these
factors determine what methods are available to practitioners.

The first factor is selecting between parametric and non-parametric techniques.
Deciding between these two broad techniques is dependent on the prior knowledge
one wants to encode into the problem. For example, if it is known that data is
generated by a distribution from an exponential family of distributions, then the
problem can be subsetted from the space of all possible distributions to a smaller
space of distributions. For example, Shewart control charts and CUSUM change
point techniques are both parametric techniques based on the Gaussian-family of
distributions [70] [16]. In other settings, it is not possible to leverage information
about the data and non-parametric techniques must be used instead [12].

The second factor is deciding whether change points should be detected offline
or online. Some algorithms are offline—also referred to as batch algorithms or ret-
rospective or posteriori change point detection—and they are applied in an ex-post
fashion after the dataset has been completely acquired [91]. If change points must
be detected as soon as possible, then waiting for the entire dataset to be acquired
is not feasible and methods that operate on data streams must be used. Methods
that fall into the category are referred to as online change point detection methods.

The aforementioned Shewart control chart and CUSUM algorithm are both designed



for data that is streamed in real-time. In the statistical literature, online methods
of change point detection are also referred to sequential change point detection [86].
For this thesis, the terms will be used interchangeably.

The third factor is determining if there are multiple change points or only one
change point to detect. This is an important factor for offline change point detection
where the decision to detect one or more change points is often chosen at the outset
[45]. Detecting multiple change points could also be relevant for the online case if a
situation arises where the window of time series under consideration may contain more
than one change point. However, most online change point methods are designed to
detect a single change point at a time.

Finally, the last factor to address is determining what statistical changes a de-
tection algorithm should detect. Many methods focus solely on detecting changes in
the mean of a distribution [54| or changes in variance [39] [44]. Methods like kernel
change point detection do not focus on detecting a specific statistical parameter, but
rather detecting that a change occurred in some moment of the distribution [4]. This
is especially useful in situations where very little is known about the data.

This thesis will concern itself with online change point detection, where data is
received in a streaming nature. We assume no prior distributional characteristics on

the data and operate in a completely non-parametric setting.

1.3 Owur Contributions

The contributions of this work are several fold. First, to our knowledge, no paper
has applied change point techniques to a financial instrument’s market liquidity by
evaluation of regime changes in the limit order book (LOB). Second, given the strong
emphasis of theoretical results in the change point detection community, we test
several, recent online kernel change point algorithms on several synthetic datasets.
Expected detection delay, false alarm rate and missed detections are compared across
the various methods. The focus of recent algorithms is on kernel methods such as
KCUSUM, NEWMA and Scan-B that will be discussed in detail in chapter 3. Thirdly,
we demonstrate an online median algorithm that can be used for tuning the Gaussian
kernel bandwidth when it’s used for kernel change point detection. A use case where

performance is superior with this online median bandwidth selection is shown as well.



1.4 Chapter Overview

Below is a short description of each chapter and its contents.

Chapter 2 provides a background on hypothesis testing and its relation to the
change point detection problem. The online change point problem is formulated
along with measures for evaluating performance. The chapter closes out by reviewing
classic methods for detecting change points on streaming data.

Chapter 3 examines kernel change point detection as it is a focus of this thesis.
A short background on the maximum mean discrepancy and its use in two-sample
hypothesis tests is covered first. This is followed by a review of the most competitive
online, kernel change point detection methods. It concludes with a novel way to
estimate the kernel bandwidth for online methods.

Chapter 4 constructs several synthetic datasets for experimentation. Results are
compared across several kernel change point methods and across several performance
metrics. Particular use cases for the novel technique presented in the previous chapter
are presented as well.

Chapter 5 applies a kernel change point detection algorithm to market liquidity in
financial markets. A model of the limit order book is presented and the construction
of the financial dataset is explained.

Chapter 6 concludes the thesis by summarizing all the results and discussing future

avenues for research.



Chapter 2
Background

This chapter describes how the change point problem will be formulated in this thesis
and, by extension, how all methods will be described using the change point detection
problem notation. Because online change point detection is closely related to two-

sample testing, a background on statistical hypothesis testing is presented first.

2.1 Hypothesis Testing

Let x and y be random variables defined on the topological space X with probability
distributions P and () respectively. Assume we draw n observations from P and m
observations from @ resulting in two samples X = {xy,29,....,2,} ~ P and Y =
{y1,Y2, .., Ym} ~ Q, where each sample is independently and identically distributed
with respect to P and (). The main question posed in this thesis is can we determine
if P and @) are statistically the same or different distributions.

To answer this question, we use the statistical hypothesis testing framework as it
is described in [13]. Generally, a hypothesis is a statement about a population pa-
rameter, 6. Examples of a population parameter are the population mean, variance
or other higher order moments. In hypothesis testing, we are trying to determine
whether one of two complementary hypotheses is true. The first, denoted by Hy, is
called the null hypothesis and it states that # € ©y where O, is some subset of the
parameter space. The second hypothesis, denoted by H;, is called the alternative
hypothesis and it states that 6 € ©F. For instance, if it is believed P and () are dis-
tinguishable by their population means, E[P] and E[Q)], then the possible hypotheses



are:

Hy :E[Q] € {E[P]} (same mean,ie. P = Q)
H, : E[Q] ¢ {E[P]} (different mean, i.e. P # Q).

(2.1)

How do we pick between Hy and H; in equation 2.17 Every hypothesis test relies
on a corresponding test statistic T that is a real-valued random variable. Because P

and () are unknown in our context, an estimate T can be calculated using X and Y
such that T : X" x XY™ — R, which yields:

T=T(X,Y). (2.2)

The test statistic 7" is then compared to some threshold selected by the user.
There are many ways to set such a threshold, but usually if the test statistic exceeds
the threshold then Hj is rejected and H; is accepted. Otherwise, the hypothesis test
fails to reject Hy.

A common way to set the threshold is through a significance level, o € [0, 1]
that is chosen at the outset. Common choices for a are 0.1,0.05 and 0.01 [66].
The test statistic is compared to a by computing a p-value that is estimated by
p=PT > T |Hp). The p-value is the probability of observing T under the null
hypothesis. A p-value < « would be improbable under the null hypothesis, therefore,
in this situation it is rejected and the alternative hypothesis is accepted.

Given the binary outcome of a two-sample test, it is clear the hypothesis test can
fail in the two following ways. The first is rejecting the null hypothesis when it is
correct. This is known as a false positive or a type-I error and is upper-bounded
by the chosen significance level, . It is equivalent to following conditional proba-
bility: P(reject Ho|Hy is true). The second possible source of error is a false nega-
tive or type-II error. The probability of committing a type-II error is denoted as
f = P (accept Ho|Hy is false). The quantity 1 — 3 is referred to as the power of a
test. Maximizing test power is an important part of designing new algorithms and is
typically used to compare different methods.

There is often a trade-off between type-I and type-II errors and the practitioner
must decide how to balance the two given their domain-specific knowledge of the
problem. In some cases, it may be desirable to sacrifice one for the other. For

example, in the medical field [56], a false positive diagnosis (type-I error) may be



more desirable than missing a diagnosis (type-II error) which would result in never
giving treatment to a patient.

Note, there is not a lot of information at our disposal for constructing a non-
parametric two-sample hypothesis test. Distributions P and () are unknown, X and
Y are the observed data and the other settings are chosen according to the specific
hypothesis test. This means the main decision left up to the practitioner is determin-
ing what statistical test to use. In other words, what 7" should be used for evaluating
equation 2.27 The choice should depend on how P and () may differ from each other.
For example, the Student t-test is a two-sample test for determining if samples of
univariate data come from a population with the same mean [85]. A generalization
of the Student t-test for the multivariate case is the Hotelling 7 test that compares
whether the means of two multivariate samples are significantly different [42]. Both
of these are parametric tests as they assume the samples are normally distributed.
This means, in the context of our problem where nothing is known about P and @),
they are not suitable tests for comparing two samples.

Alternatively, non-parametric tests make no assumptions about the distributions
P and Q. For example, the Kolmogorov-Smirnov test (KS test) [63] can determine
whether or not two univariate samples come from the same distribution. This is done
by computing the supremum of the difference of the empirical cumulative distribution
functions from each sample. The KS test does not specify what distribution the
samples come from, only if they differ according to the KS statistic. More recently
in [31] , the kernel two-sample test is introduced as a flexible, non-parametric test. It
is not limited to one dimensional data, and can be applied to non-numeric data. It is
based on the mazimum mean discrepancy (MMD) statistic and is capable of detecting
any kind of change in distribution. It is a focus in this thesis and is discussed in more

detail in section 3.1.

2.2  Problem Formulation

Because there is no official standard formulation for the online change point detection
problem in the literature, we use the description in [50] as the basis for the following

problem description.



2.2.1 Change Point Detection Problem

Consider a data stream X to be a sequence of random variables, X, X5, X3, ... where
each X; for t = 0,1,2,... is generated by some probability distribution P, and each
X, is independent of the one that came before it. A change point occurs at time ¢+ 1
if P, # P,.1. The goal of online change point detection is detecting this change point
as soon as possible.

Consider the case where we don’t know when P, # P,,; and we rely only on the
observed values X; to answer this question. We can re-frame the online change point
problem to the problem of comparing two sets from X. The intuition behind this is
simple. If indeed a change point occurs then any observed values after the change
point should exhibit a statistical difference with observed values prior to the change
point. We simply need to decide what observations should be part of each set so that
a significant comparison can be made. Using this approach, a general formulation
can now be made.

Let w be the number of most recent observations of X. Let this set be denoted by
X ={Xi—w, -, Xi—1, X; } whose length is the window, w where w € Z*. This recent
set will be compared to some reference set of X denoted by X[ef ={Xo, X1,..., Xi_w}
whose distributions Py = P, = ... = P,_,, are sampled from a common distribution
P. What is this reference set? It is data that is known to be distributed consistently
prior to a change point. In the process control literature, it is known as the in-control
distribution [9]. We will use these terms interchangeably as they capture the same
idea. We do not explicitly state how many observations are stored for X, “/ because
this depends on the change point detection method used.

Let 6, be the parameter we expect to change in our data stream at a particular
time. The most recent parameter ;" will be compared to the set reference parameters,
{6o,01, ...,0,_y}, to determine if a change point has occurred. In other words, at
each time, t, the online change point detection problem is performing the following
hypothesis test:

Hy: 0% €{600,04,...,0:—} (no change point occured)

(2.3)
Hy: 0" ¢ {00,061,....,0,_} (achange point occured)

If the null hypothesis is true then the streaming data is distributed consistently along

P and no change point exists. If the null hypothesis is rejected, the time series may



be partitioned by a change point, t*, that signifies all data from ¢ > t* are distributed
differently than data from ¢ < t*. Because we are operating in a non-parametric
setting, the parameters used for comparison are estimated using the streamed data
and aren’t assumed to follow any particular family of distributions.

Many change point detection algorithms define a statistic that is computed using
each set before and after the possible change point [3]. If the statistic is above a
threshold, A € R, then time t is classified as a change point. The estimated change
point time is denoted as ¢ and can be compared to underlying true change point, t*,
if it is known.

The size of the window, w, is an important consideration that is typically chosen
based on the problem being solved. A small window will detect change points more
frequently resulting in fast change point detection but at the cost of more incorrect
detections. A large window will have the opposite problem. The change point method

will have less incorrect detections but will be slower to detect real change points.

2.2.2 Performance Measures

An important crux of change point detection is how to evaluate an algorithm. Real life
streaming data does not always announce when its distribution has changed even when
clearly it has. In some cases, it may be possible to trace a change in variation back
to a deterministic machine that is no longer operating as expected, but in other cases
this may be impossible. For this reason most past research has focused on theoretical
results rather than empirical ones. In the cases where empirical data is used, it is
usually generated synthetically. This allows the practitioner to control exactly where
the distribution changes and compare a proposed method to ground truth change
points. Therefore, the following measures of performance will be presented in the
context of synthetic data when all change points are known.

Suppose we continuously generate synthetic data according to some distribution
and some point in time, ¢j, we generate the data from a different distribution. If
we repeat this process K* times then we can let the set of true change points be
denoted by T* = {t},t3, ..., t5. } whose size is |T*| = K*. If this particular dataset is
fed into an online change point detection algorithm in a streaming fashion then the
algorithm can generate an estimated set of change points. Let this set of estimated

change points be denoted by T = {1, ..., 1z} whose size is |T] = K. Note, K does

10



not necessarily equal K*.

Armed with both sets of change points, we can now assess performance of an
algorithm. A change point is considered detected if it occurs within a user-defined
margin of error M > 0. That is, if ¢ is detected within M samples of t* then it is an

estimated change point. Therefore, the set of true positives TP can be written as,
TP(T*,T)={t" € T3t € T st. 0 <t—t" < M}. (2.4)

Notice by this definition, an estimated change point occurring just prior to a real one
is a missed detection in online detection. This is in stark contrast to offline change
point detection that is more concerned with the segmentation of a time series, where
being as close as possible to an actual change point is sufficient. This is unrealistic
in the online scenario.

If an estimated change point falls outside the margin, then it is deemed a false
positive. These are typically called false alarms or false detections in the change

point detection literature [54|. The set of false alarms can be written as:
FA(T*, T)={l e T|pt" € T"st. 0 <i—t"< M}. (2.5)

Missed change points are referred to as missed detections and they occur when no
estimated change point is flagged following an actual change point. This is equivalent
to a false negative in machine learning classification. Therefore the set of missed

detections are:
MD(T™*) ={t" € T" s.t. t* ¢ TP}. (2.6)

In figure 2, and example demonstrating the relationship between true positives,
false alarms and missed detections is shown.

Using the set of true positives, we can also use precision and recall to evaluate
the performance. Precision is the proportion of the predicted change points that are
true change points. Recall is the proportion of the true change points that are well

predicted. This gives:

~

_ TP, 7)) _ TR T

PREC(T™,T) o

(2.7) REC(T*,T) (2.8)

Precision and recall are well-defined between (0, 1) if the margin M is smaller than

11



the spacing between two true change points. This is an important consideration that

will be useful for experiments conducted in section 4.1.

Figure 2: An example of actual change points ¢}, ¢;,t5 and estimated change points
t1,t2,t5. The first two estimated change points in green are true positives as they
are detected within the margin M. The third estimated change point in red is not
within the margin making it a false alarm. Finally the last actual change point does

not have any estimated change points after it making it a missed detection.
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While all the above metrics are useful, they are not sufficient on their own. Sup-
pose we have two online change point methods, one is capable of consistently detecting
change points one time-step after an actual change point and the second method is
capable of consistently detecting change points 20 time-steps after an actual change
point. Assuming the margin of error in this case is M > 20, is there anyway to
discern between the two methods using the above evaluation metrics? The answer is
no. This is a problem because clearly one method is better at capturing changes in a
time series quickly. Simply counting the number of false alarms or missed detections
does not capture the goal of the online change point detection problem, which is to
quickly detect change points over time, while minimizing false alarms.

In the online change point detection literature, there are two common ways to
incorporate the notion of delay when flagging change points. The first is a metric
known as the average time to false alarm (TTFA) and it is defined as the expected
amount of time that must pass before observing a false alarm is raised. It is defined
as:

TTFA = E[ { | t* does not exist]. (2.9)

12



Clearly, a larger value of TTFA is preferable. In the literature this measure is also
referred to average run length (ARL) or average run length under the null (ARLy) [46].

Alternatively, the second method of evaluating the delay of estimated change
points is by measuring the average amount of time that passes before a true change
point is detected. This is known as the expected detection delay (EDD) and is defined

as,
EDD = E[ # | t* does exists]. (2.10)
Because we will use EDD to assess performance in later chapters, it can be esti-
mated by:
E/])szligjgj_tf Vi* € TP,Vi € T sit. |f; —ti]| < M (2.11)
i:lj:1|TP’ 7 T ‘

Both TTFA and EDD are two sides of the same coin. Reducing the EDD also
reduces the TTFA, which is good for the former and bad for the latter. The opposite
is also true. Increasing TTFA, also increases the EDD. Optimizing one or the other
may depend on the domain-specific application, where the practitioner may want to

sacrifice one for the other.

2.3 Classic Algorithms

Presented below are the fundamental approaches to online change point detection
that have been very influential on modern approaches. Many modern algorithms are
variants of the classic algorithms discussed below. In the following sections let X; be
defined as it is in 2.2.1.

2.3.1 Shewart Control Chart

Shewart control charts were originally designed to detect changes in the mean of a
process where the values being observed are assumed to be Gaussian distributed [80].
As the data arrives, the data is batched into samples of size N. The sample mean,
X = % Zivzl Xy, is then calculated and compared it to a known, true mean p*, which
is assumed to be known in advance. Similarly, it is assumed the standard deviation, o,

is known in advance but it can also be estimated. If the absolute difference is greater
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than a threshold, then a change point is declared at the current batch. Therefore,
the decision rule is defined as,

o
\/_N’

where k € R is a constant that controls how sensitive the algorithm is. Typically,

X —p| >k (2.12)

it is set to k = 3 as this coincides with the observations within 3 standard deviations of
the mean. Under the assumption that the data is distributed normally, approximately
99.7% of the observations are distributed in this region, therefore a change point is
declared if it falls outside this region. The true mean is assumed to known and is
defined as p* = E[X;]. In applications, the true mean can also be replaced by some
target specification that a process must adhere to.

Tuning the hyper-parameters can drastically change the performance of the al-
gorithm. The parameter « is used to control the trade-off between false alarms and
missed detections. Choosing a lower x makes the control chart detect change points
more often and, consequently, increases the false alarms. Whereas a higher x results
in less false detections but also more missed detections. The chosen sample size, N,
is also critical and its effect on the performance of Shewart control charts is studied
in [38].

2.3.2 CUSUM

Similar to the Shewart control chart, the CUSUM algorithm tracks a statistic over
time relative to a predetermined threshold [70]. CUSUM is best applied to a process
that is already under control. It can be thought of accumulating the information of
current and past samples.
The algorithm is defined by a statistic, S; € R, that is recursively updated after
each sample, X, is observed, such that:
So=0 (Initialization)

(2.13)
Sy = max(0, 5,1 + Z;) for t=1,2,...,

where Z; = ln(%) and the statistic Sy is compared to a threshold i € R that is
predetermined by the user. Functions fy and f; are probability density functions for
the pre-change distribution and post-change distribution respectively. If S; > h then

a change point is declared at time ¢ and the algorithm is either stopped or restarted.
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Given that the statistic only flags change points when greater than a threshold, this
algorithm only detects positive changes in the distribution. In [70], it is suggested
to combine two CUSUM algorithms to detect positive and negative changes in a
distributional parameter.

As a parametric algorithm, it is assumed fy and f; are known at the outset. In
most applications, this is quite limiting and unrealistic. Therefore, in cases where
they are unknown, maximum likelihood estimates of each distribution’s parameters
are usually computed. See [48] for details on maximum likelihood estimation.

Several extensions to the CUSUM algorithm have been proposed such as the
filtered-derivative extension introduced in |7], which uses the change of the discrete
derivative of a signal over time to detect a change point. In [61], a fast initial response
(FIR) CUSUM algorithm is proposed where the starting value of initial cumulative
sums adapts over time. Instead of resetting Sy to zero as shown above, it is reset to
a non-zero value, typically based on the threshold chosen. This gives the algorithm
a head-start in quickly detecting when a process is out of control and is especially
useful for processes that don’t start in control.

Finally, since CUSUM is typically better at detecting small shifts in signals and
the Shewart control chart is faster at detecting larger changes, the two can be com-
bined [60]. The combined Shewart-CUSUM algorithm leverages the strengths of both

techniques for better overall performance. See [94] and [92] for more details.

2.3.3 EWMA

First described in [76] as a geometric average, the exponentially weighted moving
average (EWMA) is a type of moving average that applies exponential weighting to
time series samples. Initially used as a forecasting technique in the econometrics field
for smoothing noisy functions, the EWMA can also be used for determining out of
control processes as shown in [43]. Rather than weighing all observations uniformly
like the standard CUSUM algorithm or a simple moving average, a decay factor (also
called a forgetting factor), A € [0, 1], is used to control how much weight is distributed
over the previous observations. As each new observation arrives, the EWMA statistic,
E; € R, is recursively updated and compared to a threshold. If the EWMA statistic
exceeds the threshold then the process is deemed out of control or, in other words, a

change point is detected.
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The EWMA statistic is calculated as follows at each time step, t:
Et - /\Xt + (]_ - A)Et_l.

As A — 1, the EWMA gives more and more weight to the most recent observations
similar to a Shewhart control chart, which gives weight to the last observation only.
Conversely, as A — 0, the weights are distributed further into the past giving the
EWMA a longer memory similar to the CUSUM algorithm. Therefore, a EWMA
control chart can be interpreted as a trade-off between a Shewhart control chart and
a CUSUM control chart.

For detecting deviations away from a mean target value, control limits may be
calculated in a similar manner to the Shewart control chart. In [43], control limits for
the EWMA are chosen to be +£30 \/g . Like the Shewart control chart, it is assumed
the standard deviation, o, is known in advance but it can be estimated if it is not
known.

As with the other methods previously mentioned, the standard EWMA is a para-
metric method as it assumes the time series has some in-control average that is known
prior to use. This makes is difficult to apply in situations where the data is coming
from unknown distributions. It is however very fast due to its recursive structure and
does not hold a lot of data in memory making it appealing for live data streams that

need fast data processing.
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Chapter 3
Kernel Change Point Detection

In this chapter, we focus on the class of change point models that leverage kernel
techniques, known as kernel change point detection. A unique feature of kernel meth-
ods is the use of the maximum mean discrepancy (MMD) metric as the change point

test statistic. Therefore, a short review of the MMD statistic is presented first.

3.1 Kernel-Based Test Statistic

Recall we are looking for a suitable statistic to solve the change point hypothesis test
presented in 2.3. To solve this, we need a statistic that can measure the difference
between two distributions, P and ). In our setting, this is particularly hard because
we do not know P or () and only have access to data generated by them. Ideally,
the metric measuring the difference should return a small value if P ~ ) and large
value if P and @) are very different from each other. This means we need a metric
that can compute the distance between two probability distributions using only data
drawn from them. It turns out the maximum mean discrepancy (MMD) introduced
in [31] meets all these criteria.

Before diving into the specifics of the MMD and why it is useful, recall the ex-
ample from 2.1 where a hypothesis test was setup for comparing two distribution’s
means. Suppose the P and (@) follow a Gaussian as shown in figure 3 and rather than
choose any formal, statistical test to distinguish between them, we choose to create
a new feature space where distinguishing between the two is self-evident. Because a

mean difference is the focus, the expectation operator can be used to summarize each
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distribution to its mean value, E[X]. We can then plot the new feature where it is
visually clear that indeed there is a mean difference because the two values do not

map onto each other.

Figure 3: Two Gaussian distributions with different means are plotted (left) with their
corresponding mean values (right). Because their expected values of their means are

different, we can conclude that the distributions are not the same.
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But what if the distributions have the same mean but different variance as in
figure 47 The original feature we created is no longer sufficient for differentiating the
two because the means are identical. Using the same approach, we can create another
new feature based on the variance and plot both E[X] and E[X?], i.e. the first two
moments of the distributions. This solution works and visualizing them makes it
easy to detect they are indeed different distributions. However, these are both very
basic cases. What if the two distributions have the same mean and variance and
differ only in their higher-order moments? Simply creating new features over and
over based on the original feature space of the data is not a tenable solution. This
is especially true given we do not know what kind of distributions we will encounter.
Distinguishing between two sets of data non-parametrically means the approach taken

needs to consider that the distributions may be different in a variety of ways.
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Figure 4: Two Gaussian distributions with the same mean but different variances
are plotted (left) with their corresponding mean and variance values (right). In
this case, a 2-D representation is needed to distinguish between the two distribu-

tions.
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The idea behind the MMD is the following: rather than comparing the expected
value of P and () in their original feature space, why not compare their expected value
in a different feature space that makes discerning between P and () more effective.
Doing so would allow the detection of differences between P and () that were not
possible before. A classic technique for comparing samples in a different feature
space is through the use of kernel functions. Therefore, we will start with a brief

background of kernel functions.

3.1.1 Kernel Background

Suppose we have a non-empty set X. A function k : X x X — R is called a kernel if
there exists a feature space H and a corresponding feature map ¢ : X — H such that

for all z,y € X,

where (-, -),, is the inner product in H [79]. Using the kernel function, we can feed it
two points and implicitly compute the dot product of these points in the transformed
space. This is the so-called kernel trick. It’s a trick because the dot product can be
computed without having to explicitly know the feature map or what the coordinates
of ¢(z) or ¢(y) evaluate to. Lastly, because dot products are symmetric, this implies
that the kernel function as defined above is also symmetric, i.e. k(z,y) = k(y, z).

A related concept is the Gram matriz which can be computed from a set of vectors
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{x1,..,x} as an £ x ¢ matrix G, whose entries are G;; = (x;,%;). Using 3.1, we can

define a kernel gram matriz or just kernel matriz, denoted by K, as:

By symmetry of the kernel, the kernel matrix is also symmetric K;; = K;; or KT = K.

More explicitly, it is expressed as:

K 1

1 k(xy,x1) k(x1,%2) -+ k(x1,%p)

2 k(x2,x1) k(x2,X2) -+ k(x2,X) (3.3)
0 k(xp,x1) k(xe,x2) -+ k(xXe,xp)

In most applications, k is chosen to be positive definite. A function k& : X x X — R
is a positive definite kernel if it is symmetric and

n

Z cicik (x4,%5) >0, (3.4)
ij=1
for any n € N, any choice of x4, ...,x, € X and any cy, ..., ¢, € R. This is equivalent
to requiring that the constructed kernel matrix has entirely positive eigenvalues. Fur-
thermore, there always exists ¢ : X — H for which equation 3.1 holds if £ is positive
definite.

By selecting a positive definite kernel, the feature space H is actually a space of
functions known as a reproducing kernel Hilbert space (RKHS). While this may seem
odd, it actually simplifies a lot of algebra because elements in a RKHS can be treated
like finite vectors. For the purposes of this thesis, we will only deal with positive

definite kernels to ensure the corresponding feature space is a RKHS.

3.1.2 Kernel Mean Embedding

While kernel functions are useful for comparing vectors in a new feature space, this is
not quite what we need because we are looking for a way to compare two probability
distributions. In the above setting, ¢ accepts points or vectors as inputs, but this can
be generalized to random variables in the following way: Let X be a random variable

with domain © and distribution P(X). We refer to instantiations of X as a lower
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case x. In [81], it is shown that ¢ can be used to represent a probability distribution
as an element in a RKHS by
px = E_[p(X)], (3.5)

X~P

which is known as the kernel mean embedding of P. This can be interpreted as a
distribution being mapped to its expected feature map in H.

Because we are in a non-parametric setting, we cannot assume what P(X) is nor
compute px exactly. However, we can estimate the embedding using a finite sample
average [81|. Suppose we have access to a sample {z1, x9, ..., 2, } where x; is drawn

i.i.d from P(X), the empirical kernel mean embedding is

fix = — 3 o). (3.6)

See Figure 5 for a better understanding of the relationship between the distribution,
the instances of the random variable and their embeddings into the new feature space
[82].

Figure 5: Stylized depiction of a kernel mean embedding from a probability distribu-
tion to a feature space. On the left, the random variable X has observations denoted
by z;, forming a probability distribution P(X). Using the feature map, ¢, each ob-
servation can be mapped to its coordinate in the new feature space. If we repeat this
many times empirically, then the approximate mean kernel embedding, jix, will be

close to the theoretical counterpart, px.

o Elop(X)] Feature Space

Why bother mapping P to a RKHS? Because we can now compare two probability

distributions in H as if they were vectors in an infinite-dimensional space. This
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means we can use vector operations such as dot products or norms with kernel mean
embeddings.

While this new feature space representation is helpful, it is not necessarily unique.
This a problem because P and () may be mapped into a space where they are mea-
surably similar when in fact they are not. Consequently, we need to ensure the kernel
mapping is injective, i.e. that the mapping from X to H is one to one.

To ensure the kernel mapping is injective, we can make use of a special class of
kernel functions known as characteristic kernels that are introduced in [26] and [83].
These papers show that if k is characteristic then the mapping of ¢ to H is unique.
This means if a characteristic kernel is used, then X and Y can be uniquely mapped
to another feature space where the expected value in H is also unique.

With this last piece of information we can now map two different distributions
into a new feature space and compute a distance-like metric between the two, which

is the basis of the maximum mean discrepancy.

3.1.3 Maximum Mean Discrepancy

Suppose m observations from a sample {z1, xs, ..., z,, } and n observations from a dif-
ferent sample {y1,yo, ..., y,} are derived from X. Assume the observations from each
sample are instantiations of random variables X ~ P and Y ~ @ respectively. Set-
ting ¢ as the feature map as it is described in equation 3.1, the theoretical maximum

mean discrepancy (MMD) is defined in [81] as:

MMD(P Q) = Ihex — vl = 1| B, [600)) = E o)k (37
where || - ||3 is the norm on H. The MMD can be interpreted as the distance in

‘H between the kernel mean embeddings of the features. As long as a kernel function
can be defined on the given data structure, the MMD can be used. This is why it
can be applied to non-numeric data such as strings, graphs, and other structured
domains [41]. From theorem 5 of [31], the theoretical MMD(P, @) = 0 if and only if
P = (). This fact arises from the injective property defined earlier. While this is a
nice property, in practice we use empirical estimates of the kernel mean embeddings,
iix and [y, meaning an estimate of MMD will never be exactly zero even if our

samples are from the same distribution. Nonetheless, the power of MMD lies in its
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ease of estimation and the fact that it can detect any type of parameter difference
between P and Q).

Using X and Y, the unbiased estimate of the squared MMD is shown in [31] to
be:

VD, (X.) = 7o 33k ) = o 3 5 o) +
i=1 j=1 1 1=1nj=1I (3.8)
n(n—1) sz (95 7)

One caveat of equation 3.8 is that while it is an unbiased estimate of the square of

)
3.7, the calculation of \/ MMD,, is not an unbiased estimate of 3.7.
Similarly, the biased estimate of the squared MMD is

n n m m n

MMDb X Y sz xzaxj T:Lz sz(ylay])_% Zk<xlay]>

i=1 j=1 i=1 j=1 i=1 j=1
(3.9)

Because both 3.8 and 3.9 are computed in O((m+ n)?) time, they will be referred
to as quadratic-time estimates of MMD. For high-dimensional datasets (large m or
n), using a quadratic-time estimate of MMD is impractical.

An alternative is proposed in section 6 of [31] that is linear in time complexity
and still uses all available data. Letting X and Y have equal size m for notational

simplicity, then
—2 1 2
MMD, (X, Y) == — > b (w201, 42i-1) » (21, 421) (3.10)
2 5

is the linear-time estimate of MMD, where m, = 7 and

h((zi,z5), (yi,y;)) ==k (zi,25) + k (i, y;) — k (2, y5) — k (x5, 9) - (3.11)

This estimation of the squared MMD is computed in O(m), which is significantly
faster than the quadratic-time estimates. However, it pays for this speed with accu-
racy as the MMD, estimate has higher variance than MMD,,. Besides its speed of
computation, an additional benefit of MMD; is that it is normally distributed under
the null distribution unlike the quadratic-time estimate. This facilitates analysis and
provides statistical guarantees for worst-case detection delays and the expected time

to false alarm.
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Now that we have a suitable metric for non-parametrically computing a test statis-
tic between samples X and Y, a hypothesis test can be constructed using the MMD
statistic as shown in [31]. Similar to previous hypothesis tests, a threshold and kernel
function is chosen to adequately balance between type-I and type-II error. The null
hypothesis is that X and Y are equivalent in their kernel mean elements. If the MMD
is greater than the threshold, then the null hypothesis is rejected and the alternative
hypothesis is accepted. In this case, the alternative hypothesis would indicate X and

Y differ in one or more of their statistical moments.

3.1.4 Choice of Kernel

Notice we have not yet explicitly chosen a kernel function for calculating the MMD
statistic. Choosing an appropriate kernel is often done on a per case basis based on
the type of application. Additionally, optimal kernel selection is a difficult problem
that is still actively researched [25] [33]. We will only discuss one kernel function in
this thesis, the Gaussian kernel. The Gaussian kernel is the most widely used kernel
and it is the only kernel used in the kernel change point detection methods discussed
in section 3.2. For other possible choices of kernel functions see table 3.1 in [68].

Given real vectors z,y € R?, the Gaussian kernel is defined as:
k(a,y) = e a2 llovl (3.12)

where 0 > 0 and is called the kernel bandwidth. In [32], the authors recommend
selecting the bandwidth based on the median heuristic using a sample of the data.
The median is computed on the set of pairwise distances between all data points in

the sample. Therefore, o is computed by,
o = median{||z; — ;|| : 4,j =1, ...,n}. (3.13)

It is not clear where this heuristic was first introduced although many papers
incorrectly cite the 2002 textbook, Learning with kernels: support vector machines,
reqularization, optimization, and beyond by Scholkopf, Smola, Bach et al [28]. Despite
its unknown origins, it has been shown to be empirically suitable for many kernel
applications. It seems as long as the bandwidth is chosen O(v/d) [75], which the
median heuristic often achieves, then test power is independent of the bandwidth.

However, it has been shown to be sub-optimal in cases with very high-dimensions
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[67] or small sample size [74]. Because the median heuristic is critical to overall
performance of the kernel two-sample test using the MMD, its online implementation

will be explored in greater detail in section 3.3.

3.2 Related Work

3.2.1 Offline Kernel Change Point Detection

While offline change point detection techniques are not the focus of this thesis, we
provide a short summary of some kernel approaches in this domain to highlight some
important, recent work. Similar to online kernel methods, offline kernel methods are
employed non-parametrically on data to provide more robust measures in situations
where assumptions cannot be made about the data’s distribution. Offline detection
has the advantage that all data is fully available from the start. This means the key
problem to solve is where to segment the time series so that the true and estimated
change points align as closely as possible. In other words, predicting too many change
points (over-segmentation) must be balanced with predicting too little change points
(under-segmentation).

In [36], the authors approached the offline change point problem with a fixed
number of change points using kernel change point detection. This was further ex-
tended to an unknown number of change points in [4|. The authors show their kernel
change point detection procedure outputs an offline segmentation near optimal with
high probability. The authors recommend choosing the kernel based on best possi-
ble signal to noise ratio. Therefore, they rely on prior knowledge of a reference or
training set for calibrating the kernel. Theoretical guarantees for this approach are
extensively covered in 27|, where it is demonstrated that their kernel change point
procedure can always locate all the true change points with high probability. Finally,
a greedy kernel approach is introduced in [89] to improve the trade-off between sim-
pler, non-kernel based change point detection algorithms that are fast but inaccurate
and the aforementioned kernel change point detection algorithms that are very ac-
curate but computationally slow. While the authors tested their procedure with a
known number of change points, they suggest using the Bayesian Information Crite-
rion (BIC) as a model selection procedure to estimate the number of change points

before initiating the greedy kernel algorithm.
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More recently in [14], a kernel change point detection method is proposed that
uses deep generative models to augment the test power of the kernel two sample test
statistic from equation 3.7. They point out MMD’s lack of test power when using
small samples from the out of control distribution, which may easily lead to over-
fitting with kernels. Thus, they use a generative adversarial neural network (GAN),
trained on historical samples of X ~ P with noise injected into X. This surrogate
distribution is then used in conjunction with possible change points to improve the
test power of a modified MMD measure that makes use of compositional kernels.
The method is compared to other prominent change point methods for offline change
detection. All comparisons are done on synthetic data with piece-wise i.i.d. data. All
methods are benchmarked using the AUC metric for classification performance and
it is shown the KL-CPD method is competitive or better than the state of the art
methods. Furthermore, the AUC performance is maintained as the dimensionality
of the data is increased, making their kernel learning framework very interesting
for future offline change point detection. It remains to be seen if this framework
can be adopted in an online context where time to detection is a key constraint on
practicality.

All methods cited above make use of the kernel mean embedding machinery pre-
sented in section 3.1.2. It is also interesting to note that all offline kernel change
point methods cited above make use of the Gaussian kernel, which speaks to the
ubiquitousness of this kernel function. The following literature does not make use of
kernel mean embeddings but does use kernels in some way for offline change point
detection, so we include them for completeness.

One of the most similar works to this thesis is the regularized, kernel change
point analysis presented within a hypothesis testing framework in [37]. The authors
use a kernel Fisher discriminant ratio for measuring the homogeneity between two
samples. They show their unsupervised method is competitive with a supervised
SVM model on synthetic data. They also provide theoretical guarantees for the test
power consistency in a large-sample setting. They also show their method performs
adequately on real data that aren’t necessarily independent.

Recent approaches include a supervised kernel change point analysis with partial
annotations [90]. The authors combine manually annotated signals with a kernel

Mahalanobis-type norm for improved segmentation. While it is non-parametric, it
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is task specific as it relies on a human expert to correctly identify periods of signal
stability. This semi-supervised scheme is shown to better identify the change points
that are least accurately detected in a strictly unsupervised segmentation.

See section 4.2.3 in [91] for a complete review of kernel-based methods used for

offline detection.

3.2.2 Online Kernel Change Point Detection

One of the first papers to use the term kernel change point detection was in [21]. The
authors present an online kernel change point detection model based on single class
support vector machines (v-SVMs). They train two single class support vectors, one
on a past set and one on a future set. A ratio is then computed between the two
sets that acts as a dissimilarity measure in a Hilbert space. If the sets are sufficiently
dissimilar over some predetermined threshold, then a change point is assigned to the
time step that splits the two sets of data. The authors argue that a dissimilarity
measure between kernel mappings in a Hilbert space should estimate the density
supports rather than estimate the probability distributions of each set of points. While
this approach inspired a lot of interesting research that will be discussed below, it
does not use the maximum mean discrepancy and has not been studied since.

The following methods are all inspired by the classic algorithms from section 2.3.
They all make use of a variation of the maximum mean discrepancy. They are also
the most recent online kernel techniques developed and will be used for experiments
in later sections. Thus, they will be described in more detail than previous methods.

In [55], the authors use the B-test introduced in [96] and develop an offline and
online change point detection algorithm called the Scan-B! algorithm. The B-test
estimates the MMD by applying the MMD,, calculation from equation 3.8 on blocks
of data of size B and averages them. It is meant to be a compromise between the
linear-time estimation MMD), and the quadratic-time estimation MMD,,.

At each time-step t, the online Scan-B algorithm samples new data from a window
of size By and computes a B-test statistic with N past samples, also of size By that are
kept as reference samples. The reference samples are denoted as X i(B) from 4, .., N and
the test sample as Y(#). Using equation 3.8, the unbiased MMD? is then computed

between each reference sample and the test sample and finally all averaged together:

IThis algorithm was originally called MStats but was subsequently re-named in a later version.
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N
1 B
Zpot = 3 §1 MMD? (Xf o), Y<BO¢>> . (3.14)

The resulting test statistic is then normalized by Zg, +/ \/m where the authors
provide a theoretical calculation of Var[Zg]. If the normalized test statistic exceeds
some predefined threshold then a change point is declared. Because the statistic is
calculated each time and only the value of the last calculation has any weight, it
is essentially memoryless. This is similar to a Shewart control chart that calculates
a z-score at each iteration. Adjusting the size of the window, By, results in the
usual trade-off of performance in online change point detection. A smaller block size
will have a smaller computational cost and a smaller detection delay but will result
in higher type II error. A larger block size will have better type II error but will
take longer to compute. Unfortunately, no matter what block size is chosen, the
computation time for the Scan-B algorithm is the longest relative to the other kernel
change point methods discussed in this section.

From here, theoretical bounds are developed for the time to false alarm and ex-
pected detection delay. They run several experiments on synthetic data including
change in mean, change in variance, change from Gaussian to Gaussian mixture, and
change from Gaussian to Laplace distribution. Experiments are also done on real-
data sets including a speech dataset and the Human Activity Sensing Consortium
(HASC) dataset where the performance was better than the relative density-ratio
(RDR) algorithm described in [58].

A modified, "no-prior-knowledge" exponentially-weighted moving average called
NEWMA is introduced in [49]. Based on the standard exponentially weighted moving
average shown in 2.3.3, NEWMA computes two EWMA statistics of different weights.
If the difference between the two EWMA statistics exceeds a predefined threshold
then a changepoint is declared at that time step. The reason for using two EWMA
statistics is to set one to have a larger forgetting factor. Any recent changes in a
distribution will weigh heavily on one statistic, resulting in a sudden, large difference
between the two statistics.

Since a standard EWMA is a parametric method, the authors apply a kernel
mapping function, ¥, to the data prior to applying the exponential weights. This
provides a memoryless, non-parametric, online change point detection method that

does not need to store all previously streamed data. Once the statistics are updated
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at each iteration, the raw data may be discarded.

While kernel mean embeddings could be used for approximating W, as is the
case for standard implementations of MMD, this would require the storage of past
examples of data. Because the authors aim to reduce run-time cost and storage cost,
they use a random fourier features (RFF) approach for estimating W. Because V¥ is
estimated using RFF, this is the only method discussed that does not use the kernel
function for an implicit representation of the data in another feature. Instead, the
RFF explicitly maps the data to a lower dimension Euclidean product space using a

randomized feature map z : R — R™ such that:

k(x,y) = (¢(x),6(y))n = 2(x) " 2(y) (3.15)

where z(x) := W'x. Each element, w,;, is sampled from a distribution that is
the Fourier transform of a translation invariant kernel [73].

There are several approaches available for calculating RFF from the literature
and the authors use three common ones for comparison. They use the standard
RFF implementation from [73|, the FastFood implementation introduced in [53|, and
Optical Processing Unit implementation from [77]. All three are used to create three
variants of their NEWMA algorithm.

The NEWMA variants are compared to the Scan-B algorithm by running empirical
experiments on synthetic and real datasets. The synthetic datasets use streaming data
that is generated from different Gaussian mixture models. They also use an audio
dataset for testing on real data. The results of the NEWMA variants are similar, if
not better than Scan-B in terms of missed detection percentage. In terms of average
detection delay and false alarm trade-off, the NEWMA algorithm and its variants
appear to be mildly better as well. The largest advantage of the NEWMA variants
over the Scan-B method is in the execution time. Scan-B’s execution scales linearly
with window size, while NEWMA'’s execution time does not depend on window size.

Finally, in a recent, preprint paper [24], a kernel CUSUM (KCUSUM) algorithm
is proposed, where the classic CUSUM algorithm from 2.3.2 is adapted using the
faster MMD); statistic for online detection. The algorithm functions as follows, every
two observations, the MMD; is calculated using newly observed data points and data
points sampled from some reference distribution that is known at the outset. The
calculated MMD, acts as the update term to the cumulative sum statistic. If this

kernel cumulative sum statistic exceeds some predefined threshold, then a change
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point is flagged. Interestingly, unlike the previous methods that set the Gaussian
kernel’s bandwidth using the median heuristic, the authors chose to fix the bandwidth
to one. Furthermore, because it relies on a reference distribution that is outside the
data stream for comparison, KCUSUM is more of a semi-supervised algorithm rather
than a completely unsupervised one.

While this non-parametric approach can detect any change in the distribution of
a sequence, it does struggle with more complicated distributional changes such as
variance changes of a single dimension and changes beyond first and second-order
moments. It was also not benchmarked against other kernel methods, which we cover
in this thesis for completeness.

Given how important the bandwidth hyperparameter is for the Gaussian kernel
function, it is noteworthy then to see how the above online change point models tune
this hyperparameter. In the context of an infinite data stream, most methods simply
take a small initial sample and use that to set the bandwidth once at the beginning
and never change it again, like the Scan-B algorithm. But how long is an initial
bandwidth valid in a continuous data stream? If the data changes significantly in
orders of magnitude then this bandwidth selection will become stale and will have to
be re-computed. One option is to set it to a fixed value rather than use the median
heuristic like KCUSUM does. However, this is somewhat arbitrary and may lead
to poor performance in certain cases. Another possibility would be to simply run
an expanding median on all incoming data. But this would require storing all the
observations ever observed which is obviously intractable. To our knowledge, these
issues surrounding selection have not been addressed anywhere in the kernel change
point detection literature. This is why the topic of successive median calculation is a

focus in section 3.3.

3.3 Our Approach

As stated in section 3.2, all kernel change point detection methods that use a Gaussian
kernel use the median heuristic to determine the bandwidth. While this method has
proved to be sufficient for most applications, it has not been thoroughly tested against
any alternative bandwidth selection procedures. This is ironic given how much impact

the choice of bandwidth can have on performance. We present a natural alternative
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for calculating the median heuristic in real-time for online change point detection.

This method is based on the Binapprox algorithm shown below [87].

3.3.1 Successive Median Computation

Suppose we have a sample denoted as x4, .., z,, with corresponding sample mean, 7,
and sample standard deviation, s,. We can form B evenly spaced bins across the
interval [Z — s, T + S|, which is guaranteed to contain the median. We can then map
x1, .., Tn, to the created bins. The number of points in each bin is denoted by N; and
any data that is to the left of the leftmost interval is totalled and is denoted by Np.
To locate the bin b that contains the median, we add up the counts per bin starting
from the left until the total exceeds 5. The median is then approximated by taking

the midpoint of bin b.

Algorithm 1: Binapprox algorithm

Input: zy,..,2,, B

Output: Approx. median
P (@i—z)?

—_1Ny"m . _
Calculate 7 = - > " | x; and s, = —

Ju

2 Form B bins across [T — $,, T + Sg):
3 for : =0 to B — 1 do:

. 1
i:—sm—l—{%ﬂsx,%ﬂsx)

4 Map z;, .., z, to bins and set:
5 N; < no. of points in each bin
6 Ny, < no. of points to the left of the leftmost interval

7 Find the bin b that contains the median s.t. it is the minimal bin that satisfies:

n+1

b
N+ N> —

1=0

8 Return the midpoint of bin b

Suppose now that a new data sample arrives and we wish to re-compute the
median. Binapprox can be leveraged to provide an updated estimate of the median.

In this situation, the median has already been estimated using a sample denoted by
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x1,..,Tpn, and the values 2y, sg, N; and Ny, are stored. If a new sample . 41, .., 2y
arrives, how do we avoid repeating all the past calculations to find the median for
the entire sample z1,..,2,7 We simply need to allocate z,,41,.., 2, to the original
B bins and increment the counts per bin. Like before, we then determine where the
new median is by adding up each bin’s counts until we find the median bin. If it
lies outside the original bins, then Binapprox is re-computed on the entire sample.
Otherwise, we return the midpoint of the median’s bin. Note, the same logic can
be applied to the situation where data is removed from the original sample. The
only difference is rather than mapping new points to the bins, the bin counts are
decremented according to what data is removed. The procedure then continues as
previously described.

Several characteristics make the Binapprox algorithm particularly appealing for
online, non-parametric data streaming. Firstly, the runtime of Binapprox does not
depend on a data’s distribution. Secondly, the algorithm requires O(1) storage space,
and doesn’t rearrange the input data. Thirdly, in the worst-case scenario the algo-
rithm has O(n) computational complexity. In practice, it consistently runs faster
than the classic quickselect algorithm and Binmedian, a more exhaustive algorithm
that is presented in the same paper. Lastly, it can handle newly acquired data very
quickly to provide an updated approximation of the median.

The main drawback of the algorithm is hinted in its name. It is an approximation
of the median and will be at most o/B away from the true median. Therefore, if the
standard deviation of the data is extremely large, the approximation could be sig-
nificantly different from the actual median. To combat this, the author recommends

setting B = 1000, which yields sufficient approximations in most empirical cases.

3.3.2 Connection to MMD

To highlight the utility of the Binapprox algorithm, let us recall where the median
fits into the MMD for online kernel change point detection. As mentioned in section
3.1.4, a key piece of the MMD is the kernel function used. In most applications, the
Gaussian kernel from equation 3.12 is used because of its simplicity and little tuning
involved. The bit of tuning involved for the Gaussian kernel is selecting a proper
value for the kernel bandwidth. Many authors choose to use the median heuristic

from equation 3.13 for setting this kernel bandwidth parameter because it provides
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adequate results in most situations. The problem is the median heuristic is calculated
using a static sample of data once. In the context of online change point detection the
MMD statistic is constantly being updated as new data arrives, meaning the median
heuristic might be tuned to a data sample that is far different than what data is
currently streaming. Therefore, the idea presented here is to constantly update the
median heuristic as the data changes so the bandwidth parameter of the Guassian
kernel remains properly tuned as long as the kernel change point algorithm is running.

The Binapprox algorithm fits exactly into what we want to accomplish with on-
line change point detection. We have incoming data that we want to roll into the
calculation of the median heuristic but we also want a fast way to update the me-
dian while being accurate. The Binapprox algorithm checks all of these boxes and is
simple to incorporate into any online change point detection work flow.

For this setup, there are two hyperparameters that must be chosen that will affect
the estimated online bandwidth: the size of the window of past observations and how
often we update this window of observations. On one extreme we could keep track
of all past data and run an expanding median that is updated as soon as we observe
a new observation. This would be cumbersome as the amount of data stored would
grow linearly over time, which is not sustainable. Therefore, we must be careful not to
store more past data than we need for storage efficiency sake. This must be balanced
with how often we add new samples and remove the oldest samples simultaneously.
Ideally, we want to update the bandwidth as often as possible so it does not become
stale over time. However, simply removing the oldest data point and adding the
newest data point to our median window may result in unstable median estimations.
Therefore, this must also be tuned to the exact dataset to get a stable rolling result

over time.
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Chapter 4
Experiments on Synthetic Data

In this chapter we cover what synthetic datasets are used and how they are con-
structed for evaluating the online kernel change point detection methods discussed in
the previous chapter. The results of the experiments are then presented in section
4.2.

4.1 Setup

4.1.1 Initialization

An important factor for online change point methods is determining how to initialize
the algorithm. Because we are running an unsupervised model for classifying change
points, we do not spend time training the model or tuning any of the hyperparameters.
This is a double-edged sword because on one hand, we can apply a change point
algorithm to a data stream and let it start running without much interference. On
the other hand, if the algorithm does not have any prior distribution to compare
to then it will need to be adjusted to know what’s an appropriate reference or in-
control distribution. This is usually referred to as the initialization phase for online
algorithms.

There are many ways to get through the initialization step and create an appro-
priate reference sample. One way is to initially compare the incoming data with
some zero valued data. As data comes in, the algorithm can replace the reference

data with real observations, creating a reference distribution. While this does assume
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that the data is initially in-control, it does provide a simple way to create a refer-
ence distribution on the fly without prior knowledge. When analysing the results,
the practitioner must exclude the initial phase when comparisons were done with the
initial zero values because the test statistic calculated from them will be insignificant.

Another method is to construct the reference distribution with past data that do
not contain change points if it is available as done in [55] and [24]|. This method bene-
fits from not having to spend time initializing the algorithm since it can immediately
provide an informed statistical comparison. If the data stream is not very long or
costly to acquire then this method is beneficial because the entire signal is retained.
On the other hand, prior work needs to be done to construct this sample and this
may not always be feasible in practice. Another possible issue is what if the regime
of the in-control distribution shifts to a new normal? In that case, the old reference
distribution is no longer applicable and must be recreated again, which may be costly.

For the experiments presented in this chapter, we use the former method unless
otherwise said. All change point algorithms are initially compared to some noise
values until they can be replaced by past data. Any change points or metrics measured

during this time period is excluded from the performance comparison.

4.1.2 Structuring the Data Stream

In practice, there is no universal way for evaluating online change point models given
the nature of the problem. There are two main reasons for this. First, because
change point detection originated in the statistical literature, most algorithms or
models have strong theoretical results but have not being applied to synthetic or real
datasets. Second, it’s not obvious how an infinite data stream should be simulated to
evaluate the performance of an algorithm. How long does synthetic data stream have
to be to objectively evaluate an algorithm? How can you actually know where change
points occurred in a real dataset that has no ground truth labels? It is not obvious
how to answer these questions, nor does there exist a universally accepted answer in
the change point detection community. Like most things, the answer depends on the
context and what a practitioner is aiming to test with their particular algorithm.
For this thesis, we wish to compare several methods rather than just one novel

method, therefore data consistency and reproducibility will be important for drawing
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conclusions about performance. Synthetic datasets are a good way to replicate dif-
ferent distributions over and over. The change points can be placed at exact points
in the data stream. Take for example a data stream where a single random variable
is sampled from a normal distribution N'(0, 1) one thousand times and then draw a
random variable from A(1,1) for one thousand times. Clearly, a mean shift change
point occurred at time step one thousand for this data stream of length two thousand.
Both of these distributions are reproducible and we know exactly where the change
point occurred. But why choose to have one thousand samples for each distribution?
If an algorithm does not detect a change point in the thousand time steps after the
change point is it a missed detection or simply very late?” How many time steps must
be observed before one can conclude the change point is missed rather than very de-
layed? Is a mean shift change point the only kind that should be tested? What other
distributional changes should be included in an experimental setup? Again, decisions
like this are arbitrary and nuanced for evaluating online change point models because
there is no universal method.

To address these issues we combine the best practices from past research to make
a robust testing setup. We experiment with several distributional changes as detailed
in the next section. For each experiment above, a synthetic time series is created
with 500 change points that will be fed into each of the algorithms. Change points
are spaced 2000 time steps apart, where a false alarm is declared if a change point
is flagged in the thousand observations prior to an actual change point and a missed
detection is declared if a change point is not identified in the thousand time steps
following an actual change point. Once the detection statistics are calculated, the
evaluation metrics from 4.2 are computed at various thresholds.

It should be noted this testing setup is nearly identical to the testing procedure
used in the NEWMA paper except we use longer time series with more change points
and more variations of possible distribution changes. The other two kernel algorithms,
Scan-B and KCUSUM, did not use long time series with several change points but

rather a repeated test approach with a single change point.

4.1.3 Synthetic Dataset Construction

A common difficulty in change point detection is evaluating the performance of an

algorithm with datasets that aren’t overly simplistic and difficult enough to ascertain
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some real world use. Unlike fields like image recognition where standardized datasets
like MNIST provide a common benchmark, there are no standard datasets that are
widely used across the change point detection literature for evaluating new methods.
Most papers propose experiments that are relevant for the specific problem they are
trying to solve but lack examples or explanations of when their method would not be
applicable.

Given the empirical focus of this thesis, we attempt to put together the most
comprehensive experiments using synthetic data. To the best of our knowledge, no
change point detection paper covers as many variations as presented in this thesis.
While synthetic datasets are idealistic in their formulation, they provide a good start-
ing point for comparing different methods because the exact location of the change
points can be controlled for. This is a luxury that is often not available with real
world datasets, making it difficult to ascertain performance on them. Therefore, to
compare several kernel change point detection methods, they will be evaluated across
several synthetic datasets.

Inspired by recent papers [14] and [24] that attempt to bridge the gap between
the statistics and machine-learning literature, we put together various challenging
changes in distribution that may be encountered in a data stream. They are the
following: change in mean, scaling variance, alternating between Gaussian mixtures,
alternating between a Gaussian distribution and a Gaussian mixture, and alternating
between Gaussian distribution and Laplace distribution. It is truly hard to properly
generalize all the possible situations a non-parametric algorithm may be used in, but
the synthetic cases presented in this thesis cover a range of applications. The following
paragraphs describe how each one is constructed in detail.

For a change in mean, a change point is inserted in the time series at some random
time where the mean is shifted either positively or negatively. There are two variants
to this scenario. In the first, the mean change is in all dimensions simultaneously.
This is the most common experiment run by non-parametric change point detection
models (add citation for this). In the second variation, the mean change is in only
one dimension making it harder to detect.

For a change in variance, the distribution alternates between a Gaussian with
N (0, I) to a Gaussian where the variance is scaled by a factor of 2 giving N(0, 215).

Here Iy denotes a 20 x 20 covariance identity matrix that only has diagonal elements

37



all equal to 1.

For a change between Gaussian mixtures, the data stream is setup identically to
the synthetic tests ran in the NEWMA paper. One million samples are drawn from
Gaussian Mixture Models (GMM) in dimension d = 20 with £ = 10 components.
Every 2000 samples the GMM changes, i.e. k new vector means according to a
centred Gaussian distribution, £ new covariance matrices from an inverse-Wishart
distribution, and k new mixing weights from a Dirichlet distribution.

In the next scenario, the distributions are alternating between a GMM and a
standard Gaussian distribution, A(0,1). The GMMs are generated identically as the
previous experiment. Each time the change point occurs from the standard normal,
a GMM is created based on a new vector mean according to a centred Gaussian
distribution, k£ new covariance matrices from an inverse-Wishart distribution, and k
new mixing weights from a Dirichlet distribution.

In the last scenario, the time series alternates from a Gaussian with N'(0,1) to a
Laplace distribution with zero mean and unit variance., i.e. the location is y = 0 and
the scale is b = v/0.5. The idea for this scenario is detecting changes when a data
stream is consistent in its mean and variance, but not in its kurtosis. Again this is
inspired by the same experiment from the Scan-B paper.

See table 1 for a summary of each synthetic dataset.

Table 1: Synthetic Datasets Summary

Type of Change No. of Dimensions Length No. of Changepoints
Mean (all dimensions) 20 IM 500
Mean (single dimension) 20 1M 500
Variance 20 1M 500
GMMs 20 1M 500
Normal to GMM 20 1M 500
Normal to Laplace 20 1M 500

4.2 FEvaluation

Performance of each change point method is evaluated using the measures introduced

in section 2.2.2. Specifically, we compare the estimated expected detection delay from
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equation 2.11, the number of false alarms, and the number of missed detections. For
ease of visualization the number of false alarms and missed detections are normalized
by the total number of change points to detect, so we are actually plotting the false
alarm rate and missed detection rate as percentages in the following sections. All
metrics are evaluated at a range of thresholds rather than a single threshold to draw
better conclusions about the behaviour.

The exact kernel change point algorithms used for comparison and their tunings

are summarized in table 2:

Table 2: Online Kernel Change Point Detection Algorithms Used in Experiments

Name Variant Kernel Bandwidth Window Size
NEWMA RFF N/A N/A 1
Scan-B Biased MMD Gaussian Median Heuristic 250

Rolling Scan-B  Biased MMD Gaussian Online Median Heuristic 250

Notice we have not included the KCUSUM algorithm in the previous table. While
we initially hoped to include this kernel change point algorithm in our experiments,
this proved to be insufficient for a few reasons. The first is that KCUSUM is a semi-
supervised algorithm so the reference distribution is assumed to be known whenever
a new change point may arise. The testing setup can be modified to allow for this
particular situation but this is unrealistic in a constantly flowing data stream. This
leads into the second issue which is overall performance is hard to evaluate due to slack
hyperparameter that is required for this algorithm. In cases where a suitable slack
was set, the algorithm returned results that were always worse than the algorithms
discussed in table 2. In other cases, the algorithm was unable to detect any change
points. Therefore, rather than repeat that KCUSUM did not perform as well as the

other algorithms for each experiment, we decided to exclude it entirely.

4.2.1 Synthetic Results

In figure 6, the results of the mean shift are presented and we see that the rolling

median heuristic version of the Scan-B algorithm is nearly equivalent to the standard
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version of Scan-B across the different metrics for the various thresholds. The NEWMA
algorithm is significantly better than both for the EDD.

Figure 6: Evaluation graphs for mean shift change points, where expected detection

delay (top), false alarm rate (middle), and missed detection rate (bottom) are

plotted over a threshold region between |1, 1.2].
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The results of the second variant of the mean shift occurring in a single dimension

is shown figure 7. They tell the same story as the previous mean shift experiment,

where again the two versions of Scan-B yields a similar performance in all respects,
with slightly better missed detection rate at certain thresholds for the rolling median

heuristic method. The NEWMA algorithm is again about three times lower EDD

with no drawbacks in the other metrics.
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Figure 7: Evaluation graphs for a mean shift in a single dimension, where expected
detection delay (top), false alarm rate (middle), and missed detection rate (bottom)

are plotted over a threshold region between [1,1.2].
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The worst performance of the rolling median heuristic version of Scan-B is pre-
sented in 8. The EDD is consistently worse across the different thresholds for the
rolling Scan-B. While the false alarm rate is relatively still low, the algorithm missed
many change points compared to NEWMA and the regular Scan-B algorithms, which
did not miss any. This is a disappointing result because detecting changes in variance
are a very common use case for change point detection models. Between NEWMA
and regular Scan-B algorithms, both performed the same for missed detections and
false alarms but NEWMA was considerably better in EDD with a more than 50%

improvement on average.
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Figure 8: Evaluation graphs for a variance shift, where expected detection delay

(top), false alarm rate (middle), and missed detection rate (bottom) are plotted
over a threshold region between [1,1.2].
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In the next experiment of alternating between GMMs with the results shown in
figure 9, the performance of the rolling median Scan-B is not as good overall to
the standard counterpart. The EDD is consistently worse across thresholds and the
missed detections rise up as well as the thresholds widen, leading to the conclusion
that the algorithm is not sensitive enough in this situation to pick up the changes in

distribution. It is simply rarely making any detections, hence why there are almost

no false alarms, but many missed detections.
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Figure 9: Evaluation graphs for Gaussian mixture model change points, where ex-
pected detection delay (top), false alarm rate (middle), and missed detection rate

(bottom) are plotted over a threshold region between [1,1.2].
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In figure 10, the results are quite poor for the rolling median heuristic version of
Scan-B. The false alarm rate is similar to the other kernel algorithms but the EDD
and missed detections are considerably worse at various thresholds. The NEWMA

algorithm and standard Scan-B are nearly identical across the board.
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Figure 10: Evaluation graphs for Gaussian to Gaussian mixture model change points,
where expected detection delay (top), false alarm rate (middle), and missed detec-

tion rate (bottom) are plotted over a threshold region between [1,1.2].
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Finally as shown in 11, the results of the Gaussian to Laplace change points
demonstrate that the rolling median variation is tradeoff between the false alarm rate
and the missed detections as it is equivalent to the other methods in terms of EDD.
Regular Scan-B and NEWMA are quite similar for this experiment with very minor

differences at a few thresholds.
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Figure 11: Evaluation graphs for Gaussian to Laplace change points, where expected
detection delay (top), false alarm rate (middle), and missed detection rate (bottom)

are plotted over a threshold region between [1,1.2].
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In table 3, a summary of which algorithm performed best for each experiment
across each metric is shown. Overall, the NEWMA change point algorithm was the
most consistent having the lowest EDD and was still competitive among the other
metrics. While it might seem like the performance of our novel online bandwidth se-
lection for the Scan-B Gaussian kernel was inferior overall, this would be a premature
conclusion because it was still fairly comparable to the standard Scan-B counterpart
and was not worse on a variety of datasets. This means it can compete with these al-
gorithms nonetheless. For this reason, we decided to create a specific situation where
the online bandwidth selection for the Gaussian kernel may be particularly effective.

This use case is presented in the next section.
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Table 3: Synthetic Results Summary

Type of Change EDD False Alarm Missed Detection
Mean (all dimensions) NEWMA All NEWMA
Mean (single dimension) NEWMA All Rolling Scan-B
Variance NEWMA NEWMA /Scan-B. NEWMA /Scan-B
GMMs NEWMA  Rolling Scan-B NEWMA /Scan-B
Normal to GMM NEWMA All NEWMA /Scan-B

Normal to Laplace NEWMA  Rolling Scan-B° NEWMA /Scan-B

4.2.2 Rolling Median Use Case

While the results of the previous section may seem like changing the median heuristic
for the Gaussian kernel bandwidth to an online calculation, we present some particular
use cases here where it is beneficial. Specifically, we setup some experiments that
are particularly suitable for an online bandwidth estimation rather than a one-time
estimation.

The first experiment involves a mean shift similar to the first experiment presented
in the previous. However, in this case the mean shifts will be sequential in nature
with an upward trend. That is the first distribution is a d = 20 dimensional normal
sampled from A(0,1). The second distribution increments the mean by 1 yielding
N(1,1). This pattern continues for 500 change points until the final distribution is
N (499,1). The results of the experiment are shown in figure 12. As we can see the
EDD is better for the rolling median bandwidth version of Scan-B by about 5 — 10%
over the range of thresholds. This improvement comes at no cost to the amount of

false alarms or missed detections.
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Figure 12: Evaluation graphs for incremental mean shift change points, where ex-

pected detection delay (top), false alarm rate (middle), and missed detection rate

(bottom) are plotted over a threshold region between [1,1.2].
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Chapter 5
Application to Market Liquidity

In this chapter we apply a kernel change point detection algorithm to market data
acquired from the Chicago Mercantile Exchange (CME). A short review of related
work is covered in section 5.2. Properties of the limit order book (LOB) are provided
in section 5.3, as well as how the datasets are constructed in section 5.4. We then

summarize the results with exploratory plots and discussion in section 5.5.

5.1 Motivation

In finance, market liquidity describes how quickly a market participant may buy or
sell an asset without causing significant fluctuations in the price. In liquid markets,
there is minimal impact to the price by quickly buying (selling) it. In illiquid markets,
a purchase (sale) of the asset will cause the price to rise (fall) resulting in adverse price
selection if the buyer (seller) is making a large transaction. In both cases, market
liquidity is in constant fluctuation. By detecting changes in market liquidity a market
participant can identify periods of when trading may be more or less favourable.
One example is a market participant who is particularly sensitive to market liquid-
ity risk. Market liquidity risk is the loss incurred when a market participant wishes
to execute a trade or eliminate a position while not hitting the market price [18].
The greater the sparsity in a market, the greater the market liquidity risk at the
time of trade. For example, an institutional investor wishing to buy a large position
over the course of several days may want to quickly detect low levels in liquidity that

could cause them to lift the price inadvertently, resulting in higher prices subsequent
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executions of their trade. Framing liquidity changes over time as an online change
point detection problem is the focus of this chapter. We begin with a broad review

of some related studies on market liquidity.

5.2 Related Work

A substantial portion of the market liquidity literature focuses on equity markets. For
example, market liquidity and trading volume around equity earnings announcements
is explored in [51]. In [17], an aggregate view of market liquidity using transaction
data is presented over an eleven year period where the authors found market volatility,
short and long term interest rates, the day of the week, and recent market movements
were variables that affected market liquidity. Other studies have focused on the how
market liquidity changes can be indicative of shifts in market sentiment about a
company [5] [23] [20].

Another focus in the literature is how market liquidity shocks can affect bond
prices. This is especially important when pricing government bonds as they are often
used as an indicator for economic health [95]. Countries that have been studied in this
context include the U.S. [65], Canada [35], Denmark [22|, and Japan [78|. Liquidity
risks have also been analysed in the pricing of corporate bond markets as well [19].
Finally, a detailed reference on the subject of optimal execution and how it can impact
market liquidity can be found in [34].

It should be noted that any studies that were done before the new millennium
were done before the widespread use of electronic trading platforms. Also, due to
the financial crisis between 2007-2008, many new regulations were put into place to
reduce systemic risk in the markets. Therefore, any studies prior to these dates may
no longer be applicable in the current environment. See [1] and [88] for the impacts
that U.S. regulations have had on the liquidity of the U.S. fixed income market since
2008.

To our knowledge, no paper has studied intraday changes in market liquidity,
especially from a change point detection perspective. While intraday fluctuations are
noisy, we believe drastic changes in market liquidity occur at this level of granularity.
Before describing the specific datasets, a detailed description of the limit order book

is provided based on the notation used in [30].
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5.3 Properties of the Limit Order Book

Many modern financial markets are set-up as an electronic double-sided auction be-
tween buyers (bid side) and the sellers (ask side) called limit order books (LOBs). A
market participant may post orders at specific prices on either side of the book. A
limit order, denoted by =z, is defined as a tuple containing a price, p,, and a size, w,

where |w,| > 0:

T = (Dys Wy (5.1)

A limit order’s size indicates how many units of an asset a buyer (seller) is willing

to trade at p,. The prices for which an order can be submitted at are discrete prices.
The LOB at time t is denoted as L(t), and represents the set of all orders currently
active at time ¢t. All bid orders are at the best bid price or lower. The best bid price

at time ¢ is denoted as:

b(t) = . 5.2
( ) {mEEI(rtl)?’L}U{m<O} ( )

All ask orders are placed at the best ask price or higher. The best ask price at a

time, ¢, is denoted as:

a(t) = min ~ p (5.3)

= i -
{2€L(t)|we >0}

The bid-ask spread or simply the spread at a time, ¢, is defined as:
s(t) = a(t) — b(t) (5.4)

The normalized spread, s,(t) > 0, can be defined by:

sp(t) = stt) _ : (5.5)

™
There are many types of orders that can be placed in the LOB. In this context,
we assume all orders in the LOB at a given time are basic limit orders. That is, they
are orders placed at a specific price with a specific size. Therefore, at a price, p, and
a time, t, the total number of bid orders is:
n’(p,t) = > ). (5.6)
{z€L(t)|we <0,pz=p}

On the ask side, it is similarly defined as:

n(p,t) = Z Wy (5.7)

{zeL(t)|ws>0,pz=p}
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Everytime a trade occurs or a resting limit order is cancelled or filled at a price,
size is removed from the LOB at that price. If the size at the b(t) (a(t)) reaches zero
then the overall price decreases (increases). It should be obvious then that a lot of
pressure on one side or the other can result in large price changes.

Every LOB has a configuration parameter known as the tick size denoted by
m > 0, which is the smallest possible price increment between two orders at different
prices. As mentioned in [30], LOB is essentially a one-dimensional lattice where the
dimension is price and every point on the price axis is a multiple! of =.

The point of interest with this data is detecting how the entire distribution of
liquidity changes over time as shown in figure 13. These changes are often associated
with events happening in the market such as the start of U.S. trading hours, the
release of economic data or a planned speech by the chairman of the federal reserve.
There may also be unplanned events that affect the overall liquidity in the book such

as a terrorist attack or a virus outbreak like the covid-19 virus in 2020.

Figure 13: The limit order book’s liquidity drastically changes from a significant
amount of liquidity at time ¢; (left) to a low amount of liquidity at time ¢, (right).
In this case, detecting when the LOB liquidity changes as soon as possible is vital for

a market participant that wants to avoid market liquidity risk.

/\H/\/\
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5.4 Dataset Construction

While many types of financial instruments trade using a limit order book, this thesis
will be focused on futures markets found in the Chicago Mercantile Exchange (CME).
The reasoning for this is two-fold. The first, unlike bond markets or currency pair
markets, liquidity for many futures products is concentrated on a single exchange.

This simplifies analysis of liquidity by not having to aggregate data across several

'Tn most cases these multiples of 7 are strictly positive but in particular markets there may be
negative integers of m, i.e. a price axis with positive and negative prices.
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exchanges into a synthetic ladder. The second advantage is, unlike equity markets
where stocks and exchange traded funds (ETFs) are traded, there are no dark pools
available for the futures markets under consideration in this thesis. Again this sim-
plifies where the liquidity data for an instrument may appear.

The futures that will be used in our dataset are based on a combination of selecting
the most traded contracts on the CME and representing different asset classes. They

are summarized in the following table:

Table 4: Summary of Futures Studied

Name Asset Class CME Symbol Tick Size (%)
E-mini S&P 500 Equity ES 12.5
10 Year T-Notes Fixed Income ZN 15.625
Crude Oil Commodity CL 10
Gold Commodity GC 10
Euro FX FX Currency 6E 6.25

For each future contract in table 4, the state of the order book is sampled every
10 seconds from 7 AM to 4 PM EST between January 6, 2020 and April 22, 2020,
excluding days that the CME is closed. At every time step, the quantities of the top
N prices are sampled using equations 5.6 and 5.7. While all the LOBs analysed here
have dozens of price levels of liquidity at any given moment, we focus on the first ten
price levels, so N = 10. To determine the prices at which n® and n® are sampled at,
we start with the top of the book prices from equations 5.2 and 5.3 and increment
them by the tick size to get the prices for each of first ten levels of the LOB at time
t. This yields prices of p? = b(t) — im and p¢ = a(t) + i where i is an integer counter
{i € Z : 0 < i< 9}. These prices can then be used to determine what liquidity is
available at each price. For notational simplicity, we will exclude the ¢ and write the
number of quotes at the first ten levels as nj, ..., n§ for the bid side and ng, ..., ng for
the ask side. Therefore, at each time step, the input to the kernel algorithm is a 20

dimensional tuple of the form:

(n,....nH,ng, ..., na). (5.8)
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As values of equation 5.8 change over time, the kernel change point statistic changes
as well. The idea being that higher values of the kernel statistic will indicate recent
changes in the liquidity distribution of the LOB, whereas lower relative values of
the kernel statistic indicate the market is more or less at a steady state of liquidity.
Using the kernel statistic as signal, the practitioner can then be notified of unexpected

activity in the market in real-time so they can react appropriately.

5.5 Change Point Analysis

Unlike the experiments in the previous chapter, we do not have the luxury of knowing
when the distribution of liquidity will change for our time series. However, this is
a more realistic situation where data is constantly streaming and a decision must
be made about whether a change point has occurred. Therefore, we approach this
situation mostly as an exploratory exercise for discovering interesting moments when
the LOB liquidity has dramatically changed. Rather than use a suite of online change
point methods, we will focus on a single method for exploring this dataset, namely
the NEWMA algorithm. We will discuss the results of the NEWMA algorithm on
each instrument one by one.

The S&P futures demonstrated the most consistent behaviour from the algorithm.
Because of our chosen time period, we could discern the regime change at 9:30AM
EST indicating the US equity trading session had officially opened. This results in
the kernel change point statistic rising around this time before coming back down
to a lower value for the remainder of the day. This is usually followed up by an
afternoon spike near the close of the equity markets around 4:00PM EST. Market
makers often prepare for the day’s close by reducing quotes posted in the LOB to not
be left with a large unhedged position overnight. An example of this entire cycle is
shown in figure 14. These regime changes can be more or less noticeable depending
on how much people are trading on a particular day, which is usually related to the
broader macroeconomic context. The market open is the most consistently observable
phenomenon while the close does not always cause large shifts in liquidity, but instead
is a gradual tapering from over the course of an hour or two. While detecting the
opening and close is not a ground-breaking feat, keep in mind the NEWMA algorithm

did this non-parametrically with no knowledge of what the data means.
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Figure 14: Liquidity for the CME S&P 500 future contract is sampled every 10
sec from 7TAM to 4PM on April 1, 2020 and plotted at the top five price levels on
the bid side (top). For ease of visualization, only the liquidity for the first five
price levels on the bid side is shown. The NEWMA kernel change point algorithm
is then applied to this data and the resulting kernel statistic is plotted over the
same time interval (bottom). The book liquidity is low prior to the 9:30AM open
and then exhibits a level shift. It remains at this new level for the course of the
day until around 3PM as market participants begin adjusting their positions for

the upcoming close.

—— bid_size_0 —— bid_size_1 —— bid_size_2 —— bid_size_3 bid_size_4 Kernel Statistic

200
150
100

< 'JN

0

0.3

0.2

L0
0
4]
80
‘80
‘80
160
‘60
160

uuuuuuu

00:00:£0 =
0Z:60:40
0Z:50:80

ov:v
02:70:60

o0
00:8v:60

0zZ:L

ov:8
00:82:£0
0zZ:L
0t:9v:40
00:9
00:¥2:80
0z:€
0v:2v:80
00:¢C
00:02:60
0Z:62:60
o8

The algorithm did not yield as good results during the month of March 2020.
Given the stock market had crashed significantly in early March due to the covid-19
coronavirus [29], market liquidity for the S&P futures was very low for weeks. It is a
known phenomenon that when there is a lot of uncertainty, market participants are
less willing to trade risky assets such as equities [64], resulting in much less liquidity
in the market. This results in the liquidity distribution being very close to zero
throughout the day, leaving very few chances for a sophisticated, kernel change point
algorithm to detect anything.

Regarding the 10-year U.S. treasury futures, the results were much more mixed
and inconsistent. The opening and close were not consistently detected although

they should demonstrate similar regime changes during the main U.S. trading hours
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between 9:30AM and 4PM EST. It is also possible that the 10 sec sampling interval
is too often for such a liquid product and a lower sampling rate my lead to reduced
noise in the kernel statistic. Finally, there was as significant drop in typical liquidity
that was discernible during March that slowly recovered by mid-April though this do
not change the performance of the change point detection algorithm on the intraday
data.

The Euro FX future demonstrated some interesting variations in liquidity. Figure
15 shows a very drastic imbalance between the two sides of the LOB. We speculate
this change in liquidity distribution is a response to the policy changes announced
by central banks on that day. The U.S. federal reserve, European central bank, and
bank of Japan all announced interest rate cuts and quantitative easing in the wake
of the coronavirus pandemic. Another example is shown in figure 16 where the bid

side liquidity went through some noticeable changes over the course of the day.

Figure 15: Liquidity for the CME Euro FX future contract is sampled every 10 sec
from 7AM to 4PM on March 16, 2020 and plotted at the top five price levels on
the bid side (top) and ask side (middle). For ease of visualization, values are only
plotted between 9AM and 4PM. The NEWMA kernel change point algorithm is then
applied to this data and the resulting kernel statistic is plotted over the same time

interval (bottom).
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Figure 16: Liquidity for the CME Euro FX future contract is sampled every 10 sec
from 7TAM to 4PM on March 24, 2020 and plotted at the top five price levels on the
bid side (top). For ease of visualization, only the liquidity for first five price levels
on the bid side is shown between 11AM and 4PM. The NEWMA kernel change point
algorithm is then applied to this data and the resulting kernel statistic is plotted over
the same time interval (bottom). On this day, several European countries announced
stimulus packages, including Italy, Germany and Spain.
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Finally, the two commodity futures, crude oil and gold, exhibited some interesting
characteristics. The time period we looked at had especially strange market conditions
for both commodities. Gold is known to be used as a safe haven asset during uncertain
times [15], so March and April yielded a lot of activity for gold speculation. Figure
17 highlights a particular example of a volatile day for market liquidity in gold.
Simultaneously, there was an oil pricing war between Russia and Iran that caused an
influx of supply into the market to drive down crude oil prices. This combined with
little oil and gasoline consumption due to virus shut downs meant crude oil markets
were also very turbulent [2]. Unfortunately, there are no clear-cut examples that we
can show for oil. It also worth mentioning that oil prices went negative in April 20,
2020 for the first time ever. Ironically, looking at just the liquidity charts for that
day shows an average day in terms of changes and raw sizes. Evaluating market

conditions through one lens is not sufficient for understanding the bigger picture.
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Figure 17: Liquidity for the CME gold future contract is sampled every 10 sec from
7TAM to 4PM on March 18, 2020 and plotted at the top five price levels on the bid
side (top). For ease of visualization, only the liquidity for first five price levels on
the bid side is shown. The NEWMA kernel change point algorithm is then applied
to this data and the resulting kernel statistic is plotted over the same time interval
(bottom).
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Chapter 6

Conclusion

6.1 Summary of Thesis

In chapter 1 we briefly introduced the change point detection problem and different
considerations one must make when trying to solve it. Some high level applications
are presented to motivate the topic of change point detection especially in finance.

Chapter 2 dives deeper into the online change point detection and its origins from
hypothesis testing. A formal description of the online detection problem is presented
along with common evaluation metrics. Fundamental online change point algorithms
such as Shewart control charts, CUSUM and exponentially weighted moving averages
are covered as well.

Chapter 3 covers kernel change point detection and all the kernel machinery nec-
essary for understanding the kernel-based statistic used in online change point detec-
tion. A review of the most recent kernel change point detection literature is covered
and three recent methods are explained in detail as they are used for experiments in
chapter 4. A novel method for an online calculation of the median heuristic is also
presented.

Chapter 4 compares the kernel versions of EWMA, CUSUM and Shewart control
charts using various synthetic datasets. The results across various performance met-
rics are discussed and the particular use cases for using a rolling median heuristic is
presented as well.

Finally, in chapter 5 we apply a kernel change point method to market liquid-

ity data for various future contracts on the Chicago Mercantile Exchange. A brief
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overview of the limit order book and how liquidity fluctuates is presented as well.
The novel aspects of this thesis include the wide array of experiments run across
various online kernel change point methods. The introduction of an online median
heurtistic calculation that can fit into any online change point detection method
that relies on the median heuristic for kernel bandwidth tuning. Finally, we explore
market liquidity of several financial future instruments on the CME by running a

non-parametric online algorithm on a new market liquidity dataset.

6.2 Discussion and Future Work

There are several areas for which this thesis could be immediately improved upon. The
first is further optimizing the bandwidth selection for the Gaussian kernel. While we
presented a fast, online method of updating the median heuristic for setting this band-
width, several questions still remain. How often should this bandwidth be updated?
We went with an algorithm that updated the bandwidth every hundred timesteps
because that seemed to keep the median estimate robust to changes in the data.
However, experimentally we did notice that for small windows the median was very
volatile, meaning there is a certain optimal window size that needs to be selected for
this online bandwidth update. Perhaps developing the theory around this median
update would help provide minimum window size guarantees that practitioners can
implement.

Secondly, while we tried to cover many different type of experiments in chapter
4, the goal was to highlight the difficulty in exhaustively testing change points non-
parametrically in an online fashion. The hope of this is to spur more research in this
direction so that future methods may all be compared against a holistic dataset that
is agreed upon by the research community. Furthermore, any future online change
point algorithms should be compared against some variant of the NEWMA algorithm
for benchmarking purposes. It is a very lightweight, fast algorithm that performs well
in a variety of circumstances. Therefore, researching any improvements of NEWMA
would be worth the effort as well.

Another focus of this thesis was using the MMD for online change point detec-

tion. It would be interesting to explore other distance measures that could compare
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two distributions non-parametrically. It would be interesting to re-use the same ap-
proaches explored in this thesis, but with the MMD swapped for a different distance
measure. One example that comes to mind is the kernelized Stein discrepancy intro-
duced in [57] for goodness-of-fit tests. By framing the change point detection problem
as comparing new, incoming data to some stable signal, this can be essentially turned
into a goodness-of-fit test where one tests how well the new data fits to the signal
over time. Other possible ways to compare two distributions are divergences measures
that are a well studied subject in many domains [8] [71]. Finally, several techniques
using estimations of probability densities have been explored for online change point
detection. Because these techniques estimate densities directly from the observed
data, they have promising results in the non-parametric setting [47] [11].

Recently, interesting research has been made on re-purposing binary classifiers as
two-sample tests. In [40], random forests are compared to different implementations
of MMD. The authors run many tests comparing the test power across the different
two-sample tests and their random forest. The results are interesting because while
the random forest classifier is not better in every situation, it is better on hard two-
sample tests such as the blobs dataset. Therefore, it remains to be seen whether these
classifier approaches to two-sample testing can be adapted to online change point
detection in an efficient manner. Framing hypothesis testing as binary classification
is also explored in [59]. This may help bridge the statistics research in change point
detection that is more theoretical based with more empirical based results from the
machine learning community.

On the finance side, we believe there is a lot of potential for researching the me-
chanics of market liquidity. The fluctuations in liquidity in worldwide markets have
massive economic implications. So much so that financial firms that provide liquidity
were deemed an essential service during the 2020 covid-19 lockdown and allowed to
remain open as most other businesses were forced to temporarily shutdown. This
means studying the implications of market liquidity changes is vital to maintaining
a robust modern economy. However, as far as we can tell there are almost no signif-
icant datasets for market liquidity publicly available. Hopefully, in the future more
companies who own this type of data will release it periodically to the research com-

munity when possible. This would encourage researchers to tackle more interesting
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problems within real datasets. For example, one problem that exists when examin-
ing real datasets like market data is the inexistence of ground truth change points.
This makes it incredibly hard to evaluate any proposed method for detecting a change
point and disincentivizes research because it is so difficult to concretely say if a change
point method is doing anything useful. In this thesis, we used our knowledge of par-
ticular products and macroeconomic events for assessing performance but we’d like
to see if more robust ways are possible. Perhaps comparing the results of an online
algorithm like NEWMA to an offline method will reveal if the segmentation is similar
between the two. Thereby, providing conclusive results about an online change point

technique.
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